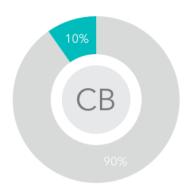
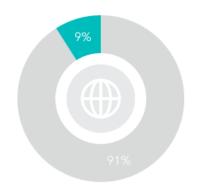
Earwax


Earwax is something that most people try not to think about. But look a little closer, and you'll learn that it actually comes in two types. Which type you have is mostly determined by your genes.


Earwax Type

What You Can Do

Cordell, you are likely to have wet earwax.

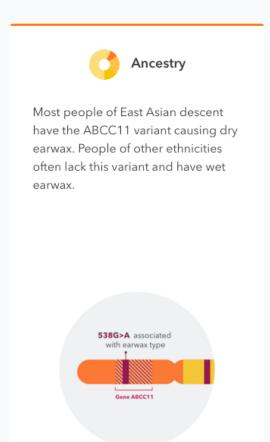
90% of customers who are genetically similar to you have wet earwax.

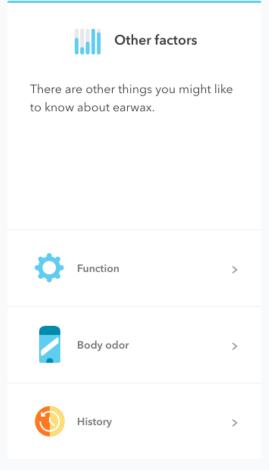
Your genetic likelihood				
Wet earwaxDry earwax	90% 10%			

European ancestry customers				
91% 9%	Wet earwax — Ory earwax —			

This prediction applies best to people of European descent. We analyzed your DNA at one genetic marker that studies have shown is associated with earwax type. Your prediction is based on data from 23andMe customers who consented to research and are genetically similar to you at this marker.

About Earwax Type


Dry earwax is flaky and light-colored compared to wet earwax, which is dark-colored and sticky.



Genetics

The type of earwax you have is almost entirely dependent on one variant in the ABCC11 gene. This gene contains the information for a protein that transports fatty substances. Changes in the ABCC11 gene result in less fat being moved into earwax, causing a dry consistency.

Do more with your Traits results.

Help us develop more trait reports by contributing to research.

Compare your results to your family and friends.

Compare

Join the discussion with other 23andMe customers interested in Traits.

Discuss

P Patent Pending

Your Physical Characteristics

Scientific Details

Methodology

About Your Results

References

We use two different methods to calculate your trait results.

Statistical Model

Most traits are influenced by many different factors, including genetics, lifestyle, and environment. Usually, a statistical model using many factors provides better predictions than looking at single factors by themselves. To develop our models, we first identify genetic markers associated with a trait using data from tens of thousands of 23andMe customers who have consented to research. Then, we use statistical methods to generate a "score" for that trait using your genotype at the relevant genetic markers as well as your age and sex. We predict your likelihood of having different versions of the trait based on the survey responses of 23andMe customers with similar scores. These predictions apply best to customers who are of the same ethnicity as the people whose data contributed to the model. The accuracy of these predictions varies from trait to trait.

Read more about our statistical methodology

Curated Model

For some traits, just a few genetic markers can strongly predict whether a person will have a particular version of the trait. For curated models, we first evaluate published scientific studies to identify genetic markers with well-established associations with the trait. Then, we look at genetic and survey data from tens of thousands of 23andMe customers who have consented to research. We estimate your likelihood of having different versions of the trait based on survey responses from customers who are genetically similar to you at those markers. These results apply best to customers who are of the same ethnicity as the people whose data contributed to the predictions.

About your Earwax Type result

Your result for this trait was calculated using a curated model.

	Variants Detected		View All Tested Markers
	1		1
Marker Tested	Your Genotype*		Additional Information
538G>A Gene: ABCC11 Marker: rs17822931	C Typical copy from one of your parents	T Variant copy from your other parent	 > Biological explanation > Typical vs. variant DNA sequence(s) > Percent of 23andMe customers with variant > References [13, 15]

^{*}This test cannot distinguish which copy you received from which parent. This test also cannot determine whether multiple <u>variants</u>, if detected, were inherited from only one parent or from both parents. This may impact how these variants are passed down.

23andMe always reports genotypes based on the 'positive' strand of the human genome reference sequence (build 37). Other sources sometimes report genotypes using the opposite strand.

References

- 1. Baker F. (1888). "Anthropological notes on the human hand." American Anthropologist. 1(1):51-76. 🗷
- 2. Frost P. (2006). "European hair and eye color: a case of frequency-dependent sexual selection?." Evolution and Human Behavior. 27(2):85-103. [2]
- 3. Hanger HC and Mulley GP. (1992). "Cerumen: its fascination and clinical importance: a review." J R Soc Med. 85(6):346-9. 🗷
- 4. Harrison JP. (1884). "On the relative length of the first three toes of the human foot." The Journal of the Anthropological Institute of Great Britain and Ireland. 13:258-69. [2]
- 5. Harrison MA. (2010). "An exploratory study of the relationship between second toe length and androgen-linked behaviors." Journal of Social, Evolutionary, and Cultural Psychology. 4(4):241-253.
- 6. Kaufman KD. (2002). "Androgens and Alopecia." Mol Cell Endocrinol. 198(1-2):89-95. 🗷
- 7. Kushlan JA. (1985). "The vestiary hypothesis of human hair reduction." Journal of Human Evolution. 14(1):29-32. 🗷
- 8. Nakano M et al. (2009). "A strong association of axillary osmidrosis with the wet earwax type determined by genotyping of the ABCC11 gene." BMC Genet. 10:42. 🗷
- 9. Ohashi J et al. (2011). "The impact of natural selection on an ABCC11 SNP determining earwax type." Mol Biol Evol. 28(1):849-57. 🖪
- 10. Pagel M and Bodmer W. (2003). A naked ape would have fewer parasites. Proc Biol Sci. 270 Suppl 1:S117-9. 🗷
- 11. Rogers AR et al. (2004). "Genetic variation at the MC1R locus and the time since loss of human body hair." Current Anthropology. 45(1):105-108. ☑
- 12. Senior C et al. (2012). "Developmental stability and leadership effectiveness." The Leadership Quarterly. 23(2):281-291. 🖪
- 13. Tomita H et al. (2002). "Mapping of the wet/dry earwax locus to the pericentromeric region of chromosome 16." Lancet. 359(9322):2000-2. ☑
- 14. Voracek M and Dressler SG. (2010). "Relationships of toe-length ratios to finger-length ratios, foot preference, and wearing of toe rings." Percept Mot Skills. 110(1):33-47. ☑
- 15. Yoshiura K et al. (2006). "A SNP in the ABCC11 gene is the determinant of human earwax type." Nat Genet. 38(3):324-30. 🗷
- 16. Zheng Z and Cohn MJ. (2011). "Developmental basis of sexually dimorphic digit ratios." Proc Natl Acad Sci USA. 108(39):16289-94. 🖪

