Sickle Cell Anemia

Sickle cell anemia is a genetic disorder characterized by anemia, episodes of pain, and frequent infections. A person must have two HbS variants in the HBB gene in order to have this condition.

Erin, we could **not determine** if you have the variant we tested.

This test is intended to detect a variant in the HBB gene but your result could not be determined.

This can be caused by random test error, other factors that interfere with the test, or if you have two copies of a tested variant.

How To Use This Test

This test does not diagnose any health conditions.

Please talk to a healthcare professional if this condition runs in your family, you think you might have this condition, or you have any concerns about your results.

Intended Uses

- To test for the HbS variant in the HBB gene.
- To identify carrier status for sickle cell anemia.

Limitations

- **Does not report** if someone has two copies of a tested variant.
- **This report only discusses** sickle cell anemia, **not other forms of sickle cell disease.** See the beta thalassemia report for more information.

Important Ethnicities

- This test is most relevant for people of African descent.

We could not determine your carrier status.

Carrier testing for sickle cell anemia may still be relevant for you because you have **African** ancestry.

We could not rule out the tested variant for sickle cell anemia.

This variant is most common in people of **African or African American** descent.

You still have a chance of being a carrier for sickle cell anemia.

Your chance of carrying the HbS variant for sickle cell anemia differs depending on where in Africa your ancestors are from.
About Sickle Cell Anemia

When symptoms develop
Symptoms typically develop by early childhood.

How it's treated
Treatment focuses on managing pain and preventing complications. Certain medications or blood transfusions may improve symptoms.

Typical signs and symptoms
- Anemia
- Fatigue
- Episodes of pain
- Frequent infections
- Stroke
- Injury to multiple organs

Ethnicities most affected
This condition is most common in people of African descent.

Read more at
- Genetics Home Reference
- GeneReviews
- Centers for Disease Control and Prevention
- National Heart, Lung, and Blood Institute

Consider talking to a healthcare professional if you are concerned about your results.

If you're starting a family, a genetic counselor can help you and your partner understand if additional testing might be appropriate.

Connect with a GC

If you have a family history of this condition or think you have symptoms, consult with a healthcare professional.

Print report

Share your results with a healthcare professional.

Print report

Learn more about this condition and connect with support groups.

Learn more
Sickle cell anemia is caused by the HbS variant in the HBB gene.

The HBB gene contains instructions for making a protein called beta-globin. This protein is part of a larger protein called hemoglobin that is found in red blood cells. Hemoglobin transports oxygen from the lungs to all other cells of the body. Certain variants in HBB alter the structure of hemoglobin, making it defective in transporting oxygen.

Read more at Genetics Home Reference.

Your result for this test could not be determined.

<table>
<thead>
<tr>
<th>Variants Detected</th>
<th>View All Tested Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker Tested</th>
<th>Your Genotype*</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbS</td>
<td>Not determined</td>
<td>> Biological explanation</td>
</tr>
<tr>
<td>Gene: HBB</td>
<td></td>
<td>> Typical vs. variant DNA sequence(s)</td>
</tr>
<tr>
<td>Marker: 1303137</td>
<td></td>
<td>> Percent of 23andMe customers with variant</td>
</tr>
</tbody>
</table>

*This test cannot distinguish which copy you received from which parent. This test also cannot determine whether multiple variants, if detected, were inherited from only one parent or from both parents. This may impact how these variants are passed down.

23andMe always reports genotypes based on the ‘positive’ strand of the human genome reference sequence (build 37). Other sources sometimes report genotypes using the opposite strand.

Test Interpretation

You have received a Not Determined test result. This result can be caused by random test error or other factors that interfere with the test. It can also be caused by having two copies of the HbS variant.

Because you received a Not Determined test result, we have no new information about your chance of being a carrier for sickle cell anemia.
Indications for Use

The 23andMe PGS Carrier Status Test for Sickle Cell Anemia is indicated for the detection of the HbS variant in the HBB gene. This test is intended to be used to determine carrier status for sickle cell anemia in adults, but cannot determine if a person has two copies of a tested variant. The test is most relevant for people of African and African American descent.

Special Considerations

- Carrier screening for hemoglobinopathies such as sickle cell anemia is recommended by ACOG for people of African descent considering having children.

Test Performance Summary

Carrier Detection Rate & Relevant Ethnicities

The “carrier detection rate” is an estimate of the percentage of carriers for this condition that would be identified by this test. Carrier detection rate is provided only where sufficient data is available.

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Carrier Detection Rate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>100% (This report covers the only variant that causes sickle cell anemia)</td>
<td>2</td>
</tr>
<tr>
<td>African</td>
<td>100% (This report covers the only variant that causes sickle cell anemia)</td>
<td>2</td>
</tr>
</tbody>
</table>

Analytical Performance

Accuracy was determined by comparing results from this test with results from sequencing for 54 samples with known variant status. 54 out of 54 genotype results were correct. About 1 in 10,400 samples may receive a Not Determined result. This can be caused by random test error or unexpected DNA sequences that interfere with the test. It can also be caused by having two copies of a variant tested.

References