BRCA1/BRCA2 (Selected Variants)

If you have a personal or family history of breast or ovarian cancer, you may want to consider testing for genetic mutations in your BRCA1 and BRCA2 genes. These mutations increase your risk of developing these cancers.

How to Use This Test

This test is used to screen for genetic mutations in your BRCA1 and BRCA2 genes. If you have a personal or family history of breast or ovarian cancer, this test may be recommended.

Interpreted Data

The test results will be available to your healthcare provider, who will discuss them with you.

Limitations

• Genetic testing is not diagnostic for cancer.
• Genetic testing does not determine the likelihood of developing cancer.
• Genetic testing cannot predict whether you will develop cancer.
• Genetic testing cannot predict the type of cancer you will develop.
• Genetic testing cannot predict the aggressiveness of cancer.

Important Risks

• Genetic testing cannot predict whether you will develop cancer.
• Genetic testing cannot predict the type of cancer you will develop.
• Genetic testing cannot predict the aggressiveness of cancer.

You have an increased risk of developing breast cancer and ovarian cancer in your lifetime. You may want to consider genetic counseling to discuss your options.

The variant detected is associated with an increased risk of developing breast and ovarian cancer. This variant is not considered to be a causal variant.

There are things you can do to manage your risk for breast cancer and ovarian cancer.

- Know your family history of breast and ovarian cancer.
- Know your personal history of breast and ovarian cancer.
- Know your risk factors for breast and ovarian cancer.
- Know your options for reducing your risk for breast and ovarian cancer.
- Know your options for reducing your risk for ovarian cancer.

There are several methods for reducing your risk for breast and ovarian cancer.

- Lifestyle changes
- Medical procedures
- Genetic testing
- Genetic counseling

It is important to discuss these options with your healthcare provider.
Frequently Asked Questions

What does it do at all?

The "toxic sets" method takes your genomic data and learns a score for every chromosome, which is then used to calculate the risk for a series of common disorders. This method uses the entire genome to learn a scoring function, which allows it to estimate the risk for these common disorders on a genome-wide scale.

How is the result interpreted?

The "toxic sets" method takes your genomic data and learns a score for every chromosome, which is then used to calculate the risk for a series of common disorders. This method uses the entire genome to learn a scoring function, which allows it to estimate the risk for these common disorders on a genome-wide scale.

Is a toxic set inherited?

Yes, each toxic set is inherited.

Is there a risk algorithm that can be assessed for the same genetic disorder?

Yes, the Risk algorithm.

The Toxic Risk Algorithm (TRA) uses the entire genome to learn a scoring function that allows it to estimate the risk for a series of common disorders on a genome-wide scale. This method is not inherited, meaning that each toxic set is not inherited.

Is there a risk algorithm that can be assessed for the same genetic disorder?

Yes, the Risk algorithm.

The Toxic Risk Algorithm (TRA) uses the entire genome to learn a scoring function that allows it to estimate the risk for a series of common disorders on a genome-wide scale. This method is not inherited, meaning that each toxic set is not inherited.