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Introduction 

Polygenic scores (PGS) estimate the heritable portion of risk for many common chronic 

diseases and other traits. Genome-wide association studies (GWAS) frequently identify multiple 

genetic variants with small to moderate individual impact on risk for a condition. To quantify the 

cumulative impact of these variants on risk, machine learning methods are used to construct 

statistical models that generate polygenic scores. Recently, advances in modeling methodology 
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have enabled massive increases in the number of genetic variants that can be included in 

polygenic models, leading to corresponding increases in the proportion of trait variance that 

these models explain ​(So & Sham, 2017; Yang et al., 2010)​. As a result, PGS are now being 

used to estimate heritable risk for a wide range of conditions and research is ongoing to 

evaluate their potential utility as part of clinical decision making ​(Khera et al., 2018)​. 

The key factor that limits researchers' ability to create large polygenic models is the size 

of the training cohort. Very large sample sizes are necessary both to identify genetic variants 

associated with a disease and to estimate their joint contribution to risk ​(Dudbridge, 2013)​. 

Additionally, obtaining samples from diverse populations is necessary to create models that are 

calibrated to these populations, whether by assessing how well a model developed using data 

from a particular ancestry group (usually European) generalizes to other (usually non-European) 

groups, or by developing models using data from various populations themselves ​(Duncan et 

al., 2019)​. With over twelve million kits sold and approximately 80% of customers — including 

customers of many different ancestries — consenting to participate in research, 23andMe has a 

unique ability to develop large PGS that predict a wide range of health conditions and traits and 

to perform validation studies across ancestries. Analyses of the company's genetic and 

self-reported health data show that we can replicate GWAS on clinically collected health 

information ​(Tung et al., 2011)​. Over the last several years, 23andMe has used PGS as the 

basis of over 26 customer reports on topics ranging from the ability to match a musical pitch to 

the likelihood of developing type 2 diabetes ​(Furlotte et al., 2015; Multhaup et al., 2019)​. 

Here we detail the modeling methodologies and evaluation procedures used to create 

the PGS behind recently released 23andMe reports on common health conditions (Figure 1). As 

an example, we detail how this methodology was used to create and evaluate the PGS used in 

23andMe's LDL Cholesterol report. The Appendix to this White Paper further summarizes the 

performance and characteristics of the other PGS used in recently released reports. We intend 

for this White Paper and Appendix to be a living document that will be updated as 

methodologies change and new PGS-based genetic reports are released.  

Methods 

Phenotype validation 

Previous analyses of 23andMe survey data have demonstrated the capacity of the 

research platform to replicate published results ​(Tung et al., 2011)​. Nevertheless, as all 
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phenotypes are derived from self-reported survey data, we assess each phenotype used to 

create a PGS to determine whether it adequately captures the intended concept. First, we 

compare the prevalence of the phenotype across the dimensions of age, sex, and ancestry to 

prevalence values reported in published literature. While overall prevalence values may differ 

due to differences between the composition of 23andMe research participants and other large 

cohorts, demographic trends should be broadly consistent. In other words, a phenotype that is 

more prevalent among men than women or more common in older than younger individuals 

should show these trends in both the 23andMe research participant population and in other 

cohorts.  

 

Figure 1:​ Outline of 23andMe's PGS creation procedure from self-report of survey data to 

generation of the polygenic model powering a health report. 

 

Next, if there are well-established correlates or predictors of the phenotype and survey 

questions about these correlates are available in the 23andMe database, we attempt to 

replicate these associations using generalized linear models as an additional check of construct 
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validity. For example, because body mass index (BMI), high LDL cholesterol, and type II 

diabetes are known risk factors for coronary artery disease (CAD; ​Arnett et al., 2019​), we would 

expect associations between these characteristics at baseline and self-reported incident CAD to 

be comparable in direction and magnitude to clinically ascertained samples.  

Lastly, we may assess whether the summary statistics from our GWAS replicate 

published GWAS results on the same or similar phenotype, if available. The primary metric for 

this comparison is the correlation between the effect sizes of independent genome-wide 

significant SNPs present in both summary statistic sets. If the 23andMe survey data is a good 

representation of the intended phenotype, we expect our GWAS of survey-based self-reported 

phenotypes to substantially replicate published GWAS results for phenotypes obtained through 

clinical ascertainment or other methods. GWAS comparisons (if available) are provided for each 

phenotype in the Appendix to this White Paper. 

 

Genotyping 

Genetic variants are assayed using Illumina BeadChip arrays as previously described in 

23andMe White Paper 23-19 ​(Multhaup et al., 2019)​. In summary, DNA is extracted from saliva 

samples, and ​genotypes are determined by the National Genetics Institute (NGI), a subsidiary of 

the Laboratory Corporation of America and a Clinical Laboratory Improvement Amendments 

(CLIA)-certified clinical laboratory. To date, most samples were run on one of three Illumina 

BeadChip platforms: Illumina HumanHap550+ BeadChip platform augmented with a custom set 

of ∼25,000 variants (V3); the Illumina HumanOmniExpress+ BeadChip with a baseline set of 

730,000 variants and a custom set of ∼30,000 variants (V4); and the Illumina Infinium Global 

Screening Array (GSA), consisting of 640,000 common variants supplemented with ~50,000 

variants of custom content (V5). Samples with a call rate of less than 98.5% are discarded. 

 

Dataset creation 
Research participants included in datasets used for PGS creation are all 23andMe 

customers who have consented to participate in research and have answered survey questions 

required to define the phenotypes of interest. Both males and females and participants ages 20 

to 80 are included unless otherwise specified in the Appendix. For any groups of related 

participants with identity-by-descent of more than 700 centimorgans, individuals are removed 

from the dataset until only one is left, preferentially retaining the less common phenotype class. 

Research participants are grouped as per ​Campbell et al. (2015)​ into Sub-Saharan 
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African/African American, East/Southeast Asian, European, Hispanic/Latino, South Asian, and 

Northern African/Central & Western Asian datasets. Any additional inclusion or exclusion criteria 

for each phenotype are described in their corresponding summaries in the Appendix. For each 

phenotype, training, validation, and testing cohorts are defined in the European ancestry 

dataset. Details of how non-European datasets are split for each phenotype are found in the 

Appendix. Whereas the GWAS dataset includes individuals genotyped on multiple genotyping 

platforms, the training, validation, and testing datasets are restricted to individuals genotyped on 

the V5 array as these model results are delivered only to customers genotyped on this array.  

 

Genome-wide association study (GWAS) 
GWAS are performed as described previously ​(Tian et al., 2017)​, except that they are 

restricted to the union of variants genotyped on the V3, V4, and/or V5 arrays. Participants 

included in the GWAS may be in the model training set depending on their genotyping array 

version, but are not included in the validation or testing sets.  

 

Variant and model selection 
After running GWAS, variants are filtered to exclude those that do not pass GWAS 

quality control metrics: parent-offspring transmission, Hardy-Weinberg​ p ​< 1e-20, large sex 

effects, multiple reference sequence matches, significant genotyping date associations, 

genotype rate ≤ 0.95, imputed estimated R-squared ≤ 0.8, minor allele frequency ≤ 0.01, and 

other internal variant filters.  

To select variant sets, we perform pruning and thresholding using PLINK1.9 ​(Chang et 

al., 2015)​ ​--clump ​ procedure with combinations of selection hyperparameters. For example: 

R-squared = [0.2, 0.4, 0.6, 0.8], dist (kb) = [10, 50, 100, 150, 200, 250, 500, 750, 1000, 1250, 

1500, 1750, 2000], and GWAS ​p​-value = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8]. The index 

variants are extracted from the clump procedure and variant sets of a pre-specified maximum 

size are kept for hyperparameter evaluation. Variant selection hyperparameter evaluation is 

performed by fitting a model with each variant set in the training cohort and evaluating in the 

validation cohort. As described above, the validation cohort is distinct from the training and 

testing cohorts and no sample sets contain close relatives within or between sets.  

Models typically include the first five genomic principal components, age, and genetically 

determined sex (unless the phenotype is single sex only). The variant data are non-imputed V5 

platform genotype calls, and missing values are filled in with population mean dosages. The 
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variant set with the highest area under the receiver operator curve (AUCROC) in the validation 

set is designated as the final feature set. Final fit statistics are obtained using the test set, which 

was held out of all upstream analyses. Variations in this approach are described in the 

phenotype-specific Appendix. 

 

Model features 
Features used in the model training typically include genomic principal components 

(PCs), demographic factors like age, sex, higher-order terms of age, interactions terms between 

demographic factors, and dosages for the variants. Variants on the X chromosome for males 

are modeled as a dominance effect (encoded 0 or 2). The purpose of including genomic PCs in 

the regression is to account for any residual population substructure. While these genomic PCs 

and other non-genetic factors are used to create the PGS, weights for features other than 

genetic variants are set to zero when computing scores so that the customer-facing report 

results are based on only genetic variation identified in the GWAS. 

 

Model training 

PGS are built using regression methods based on generalized linear models (GLM). 

Individual-level data, rather than GWAS summary statistics, are used to train these PGS. 

Features including genomic PCs, dosages for each variant, and demographic factors are 

treated as independent variables. ​For binary phenotypes, we use multivariate logistic regression 

under a general linear model framework. For quantitative phenotypes, we use linear regression. 

After a model is specified, weights for each feature are calculated through regression. We use 

Scikit-learn’s LogisticRegression gradient descent algorithm ​(Pedregosa et al., 2011)​ to 

determine optimal parameter weights, typically with the liblinear solver and L2 regularization.  

 

Methods for non-European ancestries 
One of the biggest challenges for PGS today is transferability between ancestries ​(Martin 

et al., 2017)​. Individuals of European descent make up the overwhelming majority of genetics 

research participants even though they represent a minority of global genetic diversity ​(Popejoy 

& Fullerton, 2016)​. As a result, PGS trained with data from individuals of European descent 

typically perform worse among individuals of other ancestries.  

We leverage our large research participant population with non-European ancestry to 

address this challenge using four possible approaches for each ancestry-phenotype pair, as 
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sample sizes permit. Overall, no single method always works for every phenotype-ancestry 

combination. The specific method used for each ancestry group is considered a hyperparameter 

and optimized on a case-by-case basis as described in the Appendix for each phenotype. Note 

that all validation and testing are done in ancestry-specific datasets to avoid overestimation of 

performance metrics.  

First, for phenotypes and ancestries with relatively large sample sizes, separate GWAS 

are run for each group, and ancestry-specific PGS are created from these ancestry-specific 

GWAS. However, for many phenotypes we do not have enough survey responses to run 

sufficiently powered GWAS independently for all ancestry groups. Our second approach is to 

leverage information from the European GWAS to boost power for the non-European GWAS. 

To accomplish this, we perform a meta-analysis ​(Munafò & Flint, 2004)​ that combines 

information for each SNP across ancestries, and generate PGS leveraging training sets 

comprised of multiple ancestry groups (while controlling for population structure using genomic 

principal components). This method often yields effect size estimates that are more predictive 

for the specified non-European cohort. If this method does not improve performance for a given 

non-European ancestry group, the third approach we attempt is to run a GWAS and train a PGS 

using European-ancestry data, with model hyperparameters optimized based on performance in 

a validation dataset consisting of data from the non-European ancestry group. Finally, if none of 

these three methods is able to improve performance over simply applying the European-trained 

PGS to the non-European ancestry group, the European-trained PGS is used to deliver results 

to non-European customers.  

 

Platt scaling 

After model training, the PGS may be overfit to their training datasets. This can lead to 

miscalibration when applied to other datasets (especially those from individuals of 

non-European descent). To recalibrate the PGS model, the cumulative effect size of the PGS is 

re-estimated using a procedure known as Platt scaling, as described previously ​(Multhaup et al., 

2019)​. Briefly, PGS values are calculated for each participant in all datasets. These original 

values are then standardized to fit the normal distribution. Then, separately in each test set, a 

secondary generalized linear model is fit to re-predict the outcome variable using the normalized 

PGS as a single predictor. These linear models are then used to adjust PGS scores for each 

individual. As these linear models are trained separately in each dataset, the coefficient of the 
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PGS and the intercept in these models are specific to that dataset, accomplishing recalibration. 

The testing datasets are usually ancestry-specific or ancestry- and sex-specific. 

 

Assessing model performance 
Final performance statistics for European-trained models are determined in the 

European test set, which is not included in the GWAS, hyperparameter tuning, or any model 

fitting. Similarly, statistics for non-European groups are determined in test sets that were not 

included in any previous stage of analysis. 

Ancestry-specific model performance is evaluated using the following metrics (and 

corresponding plots): 1) area under the receiver operator curve (AUROC), 2) risk stratification, 

estimated as odds ratios and relative risks for those in the upper segments of the distribution 

compared to those in the middle of the distribution (40th to 60th percentiles), 3) an estimation of 

AUROC within each decade of age — to assess age-related biases in model performance — 

and 4) calibration plots between PGS quantiles after Platt scaling and phenotype prevalences in 

each ancestry group. 

 

PGS result binarization 

For simplicity and clarity, we binarize results from the PGS into two categories: one 

representing individuals at increased likelihood of developing the condition and the other 

representing typical — i.e., not increased — likelihood of developing the condition. This is 

accomplished by determining a threshold (a specific level of risk defined by an odds ratio or 

relative risk) and then calculating the specific PGS value that corresponds to that threshold such 

that everyone with a higher PGS has at least that level of risk. A detailed explanation of this 

binarization is provided in 23andMe White Paper 23-19 ​(Multhaup et al., 2019)​. 

 

Estimated likelihoods 
For each customer, the report result is presented as the likelihood of developing a 

condition by some target age (e.g. their 70's). This estimated likelihood is derived by multiplying 

an estimated genetic relative risk by an age- (and potentially sex- and ancestry-) specific 

baseline condition prevalence at the target age. Baseline prevalence values are derived from 

either external datasets, if available, or the 23andMe database. If there is not a clear match 

between a population in an externally derived baseline and a 23andMe ancestry group, the 

European baseline is provided instead because it is the largest available sample. The specific 
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datasets used to calculate baseline prevalences for each phenotype are described in the 

Appendix. 

The method for deriving estimated relative risks associated with a genetic result is as 

follows. First, PGS are standardized within each ancestry-specific test set, and PGS 

distributions are segmented into bins corresponding to percentiles. We use 92 bins, with the 

lowest and highest 5% of customers placed into single bins, and 90 intermediate bins each 

capturing 1% of the PGS distribution between these extremes. We chose to use larger bins at 

the extremes to avoid over- or under-estimating probabilities at the extreme tails of the PGS 

distribution. We bin participants rather than provide unique estimates for each individual 

because the customer-facing result is rounded to a whole percent. 

Next, we calculate model-estimated prevalences for each genetic result bin at the target 

age of the report result. This is accomplished by re-estimating the prevalences for the test sets 

with the age parameter set as the target age (along with age-related covariates like any 

age-by-sex interaction terms) for the whole test set. In this way, we leverage the full (genetics + 

demographics) model to estimate prevalences for each ancestry group at the target age for both 

sexes. We generate these model-estimated prevalences because the sample size of every 

ancestry-specific test set is usually not sufficient to calculate reliable observed prevalences 

stratified by sex, age, and PGS percentile.  

These estimated phenotype prevalences at the target age are Platt scaled to adjust for 

any miscalibration within each ancestry group. The parameters used for Platt scaling are based 

on the distribution of estimated probabilities given participants’ actual ages (i.e., Platt scaling 

parameters are not re-estimated when age is fixed for the whole sample).  

These scaled estimated phenotype prevalences are transformed into relative risks with 

reference to the median of each ancestry group’s PGS distribution. In other words, the 

estimated prevalence for a particular genetic score percentile at the target age for a given sex is 

divided by the estimated prevalence at the median PGS for that group. The resulting values 

represent estimated relative risks based on the full model (including both genetic and 

demographic features) across the dimensions of genetic risk and demographics. We then 

multiply these relative risks by the baseline prevalence values to yield target age-linked 

estimated likelihoods. 

These estimates should be interpreted in light of several limitations to this approach. 

First, for conditions linked to higher rates of mortality, baseline prevalence estimates at 

advanced ages gathered from cross-sectional data sources likely undercount the true 
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cumulative incidence of a condition. As such, these estimates represent the likelihood of having 

the condition assuming survival to a particular age. While other modeling strategies, like 

competing risks models ​(Gail et al., 1989)​, could be used to account for loss in participation due 

to mortality or other causes, they require detailed incidence data that are often unavailable. 

Furthermore, likelihood estimates as computed here only take into account risk stratification due 

to common variants. There are often rare variants and nearly always non-genetic factors that 

could be used to estimate a more comprehensive total lifetime risk.  

 

Quality control measures 

Given that these polygenic models encompass thousands of variants, it is possible that 

an individual may not have genotype calls for a subset of markers included in a particular 

model. For those missing genotype calls, we impute to the population mean dosage to calculate 

an individual’s score. Consequently, these missing values can introduce uncertainty as to 

whether or not a customer’s score is above or below the binary qualitative result threshold.  

In order to estimate this uncertainty, we use a metric similar to a Z score that includes 

information about a variant’s effect size (𝛽), its effect allele frequency (​p)​, and an individual’s 

distance from the binary result threshold. For each missing genotype call ​i​  across ​n​ missing 

calls,​ ​we use the below equation to determine the ratio between the distance of an individual’s 

score from the threshold and the uncertainty in the score due to missing values. 

 

 

 

As this metric approaches zero, the probability that a customer’s score could be on the 

other side of the threshold increases to a maximum of 50%. If an individual’s score has greater 

than a 1% chance of being on the other side of the binary threshold due to the specific 

missingness patterns in their data, the customer is alerted to the possibility that their qualitative 

result could differ if they were genotyped again and these missing values were called. 

Irrespective of this metric, no result is provided to customers missing genotype calls at more 

than 10% of the markers in a particular model. 

 

https://www.zotero.org/google-docs/?dGyrQP


10 
 

Case study: High LDL Cholesterol  

Here we demonstrate the above methods applied to a model predicting the genetic risk 

of ever having high LDL cholesterol (LDL-C) levels. This section is intended to walk the reader 

through the generation of the consumer-facing results for this model. Details of the remaining 

PGS-based health reports are described in the separate Appendix to this White Paper. 

 

Dataset 
Individuals eligible for the development of the LDL cholesterol model were 23andMe 

customers who provided informed consent and answered survey questions pertaining to LDL-C 

and a history of cholesterol-lowering medication (Table 1). 

 
High LDL cholesterol phenotype definition 

The phenotype used to develop polygenic models represented self-report of ever having 

had high LDL-C or ever having been prescribed medication to lower cholesterol, an indication 

that a physician likely determined that the respondent had high LDL-C. This phenotype 

combined responses from three questions pertaining to the most recent LDL-C, highest ever 

LDL-C, and medication history. Prevalence increased with advancing age (Figure 2). Additional 

detail about survey questions is provided in the Appendix to this White Paper. 

 

Comparison to previously published GWAS 
The largest external GWAS to date on measured LDL-C levels (as published by the 

Global Lipid Genetics Consortium, GLGC) yielded many genome-wide significant loci ​(Willer et 

al., 2013)​. In order to validate the results of the 23andMe GWAS, we compared the summary 

statistics of these two GWAS. A Manhattan plot below (Figure 3) shows an overlay of the 

p​-values obtained by the two GWAS, rescaled to have similar peak heights. This plot 

demonstrates the substantial overlap between the two GWAS, confirming that the self-reported 

phenotype used in the 23andMe data, while not as granular as quantitative laboratory measures 

of lipid levels, does indeed capture genetic signals highly similar to those captured by GWAS of 

LDL-C levels measured from blood. Among the 471 genome-wide significant hits in the GLGC 

data (obtained after pruning and clumping the summary statistics), 407 (86.4%) were also 

genome-wide significant in the 23andMe GWAS. 
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Table 1​: High LDL-C participant cohort descriptives 

Platform Ancestry Group Sample Use N Age mean 
(SD) 

Sex  
(% female) 

High LDL-C 
Prevalence (%) 

V1 to V5 European GWAS 617,165 56.2 (13.8) 54.60% 41.99% 

V5 

European 

Training the 
European 

Model 
511,469 55.0 (13.9) 55.50% 40.60% 

Testing 56,749 55.1 (14.0) 55.24% 40.94% 

Sub-Saharan 
African/African 

American 
Testing 18,710 50.1 (13.5) 59.02% 40.94% 

East/Southeast 
Asian Testing 18,357 44.7 (14.2) 57.51% 27.07% 

Hispanic/Latino Testing 72,806 47.8 (14.0) 56.46% 33.86% 

South Asian Testing 6,128 44.3 (13.0) 37.73% 34.48% 

Northern 
African/Central & 
Western Asian 

Testing 5,267 49.4 (14.7) 40.38% 38.47% 

 

 

 

Figure 2:​ High LDL-C phenotype distribution in the European ancestry training set 
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Figure 3​: Manhattan plot of 23andMe and ​Willer et al., (2013)​ GWAS summary statistics for 

LDL-C. The ​p​-values for each variant shared between the 23andMe (blue) and Global Lipids 

Genetics Consortium (GLGC; red) genome-wide association studies (GWASs) are depicted. 

Chromosomal location is represented on the horizontal axis, and the negative log of the ​p​-value 

is represented on the vertical axis (scaled separately for each analysis).  

 

 

 

Figure 4​:​ Scatter plot showing the estimated effect sizes for 23andMe (​change in log-odds per 

unit predictor change) ​and Global Lipids Genetics Consortium (GLGC; linear betas; ​Willer et al., 

2013​) genome-wide significant hits shared between the two GWAS for LDL cholesterol.  
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Next, as an additional validation of the 23andMe GWAS, the effect sizes of all 

independent genome-wide significant loci found in both sets of summary statistics were 

compared. These effect sizes should be similar in scale and with the same positive or negative 

valence. We determined the correlation between these two sets of effect sizes after reformatting 

the data to align all strand and reference alleles and selecting independent variants using 

clumping and pruning procedures in PLINK (​Chang et al., 2015; Purcell et al., 2007​; parameters 

p​-value = 5e-8, r​2​ = 0.5, distance = 250kb). As shown in Figure 4, all but two genome-wide 

significant loci showed the same positive or negative valence in the GWAS, and the effect sizes 

were strongly correlated. The replication of the majority of previously identified loci in addition to 

the correlated effect sizes demonstrates that the 23andMe GWAS based on self-reported data 

adequately captured the results of the external GLGC GWAS, which was based on clinically 

ascertained laboratory values. 
 
Model performance 

Demographic covariates included in polygenic modeling for LDL-C were age, sex, age​2​, 

as well as sex-by-age and sex-by-age​2​ interaction terms. Model training and hyperparameter 

tuning was performed in samples of European descent, as described in Methods. The final 

selected model contained 2,950 genetic variants. 

Performance and calibration statistics were assessed as described (see Methods). As 

expected, the PGS performed best in individuals of European ancestry, followed by individuals 

of Hispanic/Latino, South Asian, and Northern African/Central & Western Asian ancestry, and 

finally in Sub-Saharan African/African American and East/Southeast Asian ancestries (Table 2, 

Figures 5-7). In all these populations, however, the odds ratio for high LDL-C for individuals in 

the top 5% of the (genetics-only) PGS versus individuals with average PGS was close to or 

higher than two, indicating that the PGS was able to stratify a substantial amount of risk for 

those at the right tail of the distribution. Additionally, Platt-scaled calibration plots illustrate a 

high correlation of predicted versus real prevalences in all ancestries (Figure 8).  

 

Qualitative result thresholding 
We used standardized (within each population) polygenic scores to determine the 

population-specific threshold corresponding to an odds ratio of 1.5 relative to the 40th to 60th 

percentile of each population’s distribution. Table 3 shows the proportion of customers above 
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this threshold, who would thus receive the “increased likelihood” result. Likelihood ratios 

associated with the “increased likelihood” result are also provided in Table 3. 
 
Table 2​: High LDL-C PGS performance characteristics 

Ancestry Group 
(test sets) 

Full Model 
AUROC 

Genetics Only 
AUROC 

Odds Ratio 
top 5% versus 

average (95%CIs) 

Odds Ratio 
top 5% versus 

bottom 5% (95%CIs) 

European 0.7770 0.6456 2.81 
(2.58 to 3.07) 

10.24 
(9.02 to 11.63) 

Sub-Saharan 
African/African 

American 
0.7312 0.5985 1.91 

(1.67 to 2.23) 
4.10 

(3.34 to 5.05) 

East/Southeast Asian 0.7635 0.5888 1.91 
(1.64 to 2.22) 

4.30 
(3.43 to 5.39) 

Hispanic/Latino 0.7561 0.6179 2.31 
(2.15 to 2.49) 

5.87 
(5.27 to 6.55) 

South Asian 0.7828 0.6222 2.69 
(2.08 to 3.47) 

7.75 
(5.29 to 11.37) 

Northern 
African/Central & 
Western Asian 

0.7776 0.6188 2.81 
(2.13 to 3.72) 

7.49 
(5.04 to 11.14) 

 

Table 3​: High LDL-C qualitative result characteristics 

Ancestry Group 
(test sets) 

Odds Ratio for 
Result Threshold 

Percent Above 
Threshold 

Likelihood Ratio of 
"Increased" Result (95% CIs) 

European 1.5 22.79% 1.97 (1.91 to 2.03) 

Sub-Saharan 
African/African American 1.5 12.32% 1.69 (1.56 to 1.82) 

East/Southeast Asian 1.5 10.37% 1.63 (1.50 to 1.78) 

Hispanic/Latino 1.5 17.19% 1.80 (1.74 to 1.86) 

South Asian 1.5 18.29% 1.82 (1.64 to 2.02) 

Northern African/Central 
& Western Asian 1.5 17.47% 1.85 (1.64 to 2.08) 
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Quantitative result calculation 
Ancestry- and sex-specific baseline prevalences of ever having had high LDL cholesterol 

were derived from the 2017 data release of the Behavioral Risk Factor Surveillance System 

(BRFSS; Centers for Disease Control and Prevention [CDC], 2017). The specific calculated 

variable (coded _RFCHOL1) represents the concept: adults who have had their cholesterol 

checked and have been told by a doctor, nurse, or other health professional that it was high. 

The ancestry variable used (coded _RACE) included the categories White non-Hispanic, Black 

non-Hispanic, Asian non-Hispanic, and Hispanic. Analysis was restricted only to those between 

the ages of 70 and 79, to capture this decade of age (coded _AGEG5YR). The descriptives 

used for each sex and ancestry combination and how they map to each 23andMe ancestry 

group are shown in Table 4. 

 

Table 4:​ High LDL-C baseline prevalences 

Group 
Matched 23andMe 

Population(s) Sex N Prevalence 95% CI 

White 
Non-Hispanic 

European, Northern 
African/Central & 

Western Asian, Other 

Male 23,256 55.02% 54.38% to 55.66% 

Female 33,369 54.22% 53.69% to 54.76% 

Black 
Non-Hispanic 

Sub-Saharan 
African/African 

American 

Male 1,335 52.58% 49.91% to 55.26% 

Female 2,795 53.42% 51.57% to 55.27% 

Asian 
Non-Hispanic 

East/Southeast Asian, 
South Asian 

Male 327 46.18% 40.77% to 51.58% 

Female 386 51.30% 46.31% to 56.28% 

Hispanic Hispanic/Latino 
Male 951 46.58% 43.41% to 49.75% 

Female 1,619 51.95% 49.51% to 54.38% 
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Figure 5: ​High LDL-C AUROC across ancestry-specific test sets 

 

 

Figure 6: ​High LDL-C AUROC within each decade of age across ancestry-specific test sets
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Figure 7: ​High LDL-C case/control standardized PGS distributions across ancestry-specific test 

sets

 
Figure 8:​ ​ ​High LDL-C Platt-scaled calibration plots across ancestry-specific test sets
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